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Abstract

In a previous paper [7] we introduced a class of multiscale dynamic models evolving on

dyadic trees in which each level in the tree corresponds to the representation of a signal at a

particular scale. One of the estimation algorithms suggested in [7] led to the introduction of

a new class of Riccati equations describing the evolution of the estimation error covariance

as multiresolution data is fused in a fine-to-coarse direction. This equation can be thought

of as having 3 steps in its recursive description: a measurement update step, a fine-to-coarse

prediction step, and a fusion step. In this paper we analyze this class of equations. In

particular by introducing several rudimentary elements of a system theory for processes

on trees we develop bounds on the error covariance and use these in analyzing stability

and steady-state behavior of the fine-to-coarse filter and the Riccati equations. While

this analysis is similar in spirit to that for standard Riccati equations and Kalman filters,

there are substantial differences that arise in the multiscale context. For example, the

asymmetry of the dyadic tree makes it necessary to define multiscale processes via a coarse-

to-fine dynamic model and also to define the first step in a fusion processor in the opposite

direction - i.e. fine-to-coarse. Also, the notions of stability, reachability, and observability

are different. Most importantly for the analysis here, we will see that the fusion step in the

fine-to-coarse filter and Riccati equation requires that we focus attention on the maximum

likelihood estimator in order to develop a stability and steady-state theory.
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1 INTRODUCTION 2

1 Introduction

Multiscale signal analysis is presently an extremely active research topic due in large

part to the emerging theory of wavelet transforms [8,10,11] and to a broad array of

applications in which multiresolution analysis seems to be needed or natural. Our

work in this area [7,2] has been motivated by a desire to develop multiscale statistical

models, inspired by the structure of wavelet transforms, and which could then pro-

vide the foundation for statistically optimal multiresolution processing algorithms.

In particular in [7] we introduced a class of multiscale state models evolving in a

coarse-to-fine direction on a dyadic tree and presented several algorithms for optimal

estimation for these processes, i.e. for statistically optimal fusion of multiresolution

measurements. In this paper we take a much more careful look at one of these algo-

rithms and develop the required system-theoretic concepts for systems on trees that

allow us to analyze and to understand more deeply the structure and properties of

this class of multiresolution data fusion algorithms.

In the next section we briefly review the modeling framework introduced in [7]

and one of the estimation procedures derived therein. In particular, as we discuss,

the wavelet transform makes it natural to define multiscale models evolving from

coarse to fine resolution representations. On the other hand, the particular estimation

algorithm analyzed here - a two sweep algorithm in the spirit of the Rauch-Tung-

Striebel smoothing algorithm - must have as its first step a sweep evolving in the

opposite direction, i.e. from fine to coarse scales. Furthermore this sweep, which

resembles a Kalman filter recursion(although now in scale), has an additional step

not found in temporal processing corresponding to the fusion of information as we

move from fine-to-coarse scales.

The remainder of this paper then analyzes in detail the qualitative properties of

this fine-to-coarse filtering step. In particular our main results center on the stability

of this step and the convergence to steady-state. As we will see, the fusion step makes

it necessary to view the optimal estimator as producing a maximum likelihood(ML)

estimate which is then combined with prior statistics, and it is the dynamics of the ML
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estimate recursion which must be analyzed. Also, in order to analyze this recursion

we need to develop several system-theoretic notions for fine-to-coarse recursions on

dyadic trees. In particular, in Section 3 we motivate and define the ML version of

our fine-to-coarse Kalman filter. In Section 4 we develop notions of reachability and

observability which we then use in Section 5 to obtain bounds on the error covariance

of the filter. In Section 6 we then define and analyze ,p-stability for fine-to-coarse

recursions. As we will see, the conditions for stability depend strongly on the choice

of p. In Section 7 we then use our bounds on the error covariance as the basis for a

Lyapunov proof of 12-stability of the fine-to-coarse filter, while in Section 8 we present

results on the steady-state filter.
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2 Multiscale Stochastic Processes on Trees and

Their Estimation

As described in [10,11], the wavelet transform of a function f(x) provides a sequence

of approximations of the signal, at successively finer scales, consisting of linear combi-

nations of shifted versions of a single function +(x) compressed or expanded to match

the scale in question. That is the approximation of f(x) at the mth scale is given by

+00

f m (x)= - f(m,n)(2 mx - n) (2.1)
n=-oo

As we describe in [7], the evolution of this approximation from scale to scale

describes a dynamical relationship between the coefficients f(m, n) at one scale and

those at the next. Indeed this relationship defines a lattice on the points (m, n), where

(m + 1, k) is connected to (m, n) if f(m, n) influences f(m +1, k). For example the so-

called Haar approximation, in which each f(m, n) is simply an average of f(x) over

an interval of length 2 -m, naturally defines a dyadic tree structure on the points (m, n)

in which each point has two equally-weighted descendents corresponding to the two

subintervals of length 2- m- 1 at the (m + 1)st scale obtained from the corresponding

interval of length 2 - m at the mth scale.

The preceding development provides the motivation for the study of stochastic

processes x(m,n) defined on the types of lattices just described. While we have

performed some analysis for the most general of these lattices [6], the work in [7] and

in this paper focus on the dyadic tree. Let us make several comments about this

case. First, as illustrated in Figure 1, with this and any of the other lattices, the

scale index m is time-like. For example it defines a natural direction of recursion for

our representation, namely a signal is synthesized via a coarse-to-fine recursion. In

the case of our tree, with increasing m - i.e. the direction of synthesis - denoting the

forward direction, we then can define a unique backward shift -l1 and two forward

shifts ar and /(see Figure 1). Also, for notational convenience we denote each node

of the tree by a single abstract index t and let T denote the set of all nodes. Thus if

t = (m, n) then ct = (m + 1, 2n), P3t = (m + 1, 2n + 1), and y-lt = (m - 1, [n]) where
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Figure 1: Dyadic Tree Representation

[x] =integer part of x. Also we use the notation m(t) to denote the scale(i.e. the

m-component of t). Finally, it is worth noting that while we have described multi-

scale representations for continuous-time signals on (-oo, oo), they can also be used

for signals on compact intervals or in discrete-time. For example a signal defined for

t = 0,1, ..., 2
M - 1 can be represented by M scales, each of which represents in essence

an averaged, decimated version of the finer scale immediately below it. In this case

the tree of Figure 1 has a bottom level, representing the samples of the signal itself,

and a single root node, denoted by 0, at the top. Such a root node also exists in the

representation of continuous-time signals defined on a compact interval.
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With the preceding as motivation we introduced in [7] the following class of state-

space models on trees:

x(t) = A(m(t))x(-l't) + B(m(t))w(t) (2.2)

where {w(t), t E T} is a set of independent, zero-mean Gaussian random variables. If

we are dealing with a tree with unique root node, 0, we require w(t) to be independent

of x(0), the zero-mean initial condition. The covariance of w(t) is I and that of x(0) is

Px(0). If we wish the model eq.(2.2) to define a process over the entire infinite tree, we

simply require that w(t) is independent of the "past" of x, i.e. {x(r)lm(T) < m(t)}.

If A(m) is invertible for all m, this is equivalent to requiring w(t) to be independent

of some x(r) with rT t, m(r) < m(t).

Let us make several comments about this model. Note first that the model does

evolve along the tree, as both x(at) and x(/lt) evolve from x(t). Secondly, we note

that this process has a Markovian property: given x at scale m, x at scale m + 1 is

independent of x at scales less than or equal to m - 1. Indeed for this to hold all

we need is for w to be independent from scale to scale and not necessarily at each

individual node. Also while the analysis we perform is easily extended to the case

in which A and B are arbitrary functions of t, we have chosen to focus here on a

translation-invariant model: we allow these quantities to depend only on scale. As

we will see this leads to significant computational efficiencies and also, when this

dependence is chosen appropriately, these models lead to processes possessing self-

similar properties from scale to scale.

Note that the second-order statistics of x(t) are easily computed. In particular

the covariance Px(t) = E[x(t)xT (t)] evolves according to a Lyapunov equation on the

tree:

Px(t) = A(m(t))Px(--lt)A T (m(t)) + B(m(t))BT (m(t)) (2.3)

Note in particular that if Px(T) depends only on m(-) for m(r) < m(t)- 1, then Px(t)

depends only on m(t). We will assume that this is the case and therefore will write

Px(t) = Px(m(t)). Note that this is always true if we are considering the subtree with

single root node 0. Also if A(m) is invertible for all m, and if Px(t) = Px(m(t)) at
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some scale(i.e. at all t for which m(t) equals m for some m), then P (t) = P,(m(t))

for all t. Furthermore, if A(m(t)) = A is stable and if B(m(t)) = B, let P, be the

solution to the algebraic Lyapunov equation

P, = APXAT + BBT (2.4)

In this case if P,(O) = P,(if we have a root node), or if we assume that P,(r) = P,

for m(r) sufficiently negative', then P.(t) = P, for all t, and we have the stationary

model.

As we will see in a moment, the multiscale estimation algorithm we will ana-

lyze involves a fine-to-coarse recursion requiring a corresponding version of eq.(2.2).

Assuming that A(m) is invertible for all m we can directly apply the results of [12]:

x(y-lt) = F(m(t))x(t) - A-l(m(t))B(m(t))zti(t) (2.5)

with

F(m(t)) = A-l(m(t))[I - B(m(t))BT (m(t))P l(m(t))]

= P(m(t)- 1)A T (m(t))Pl (m(t)) (2.6)

and where

Cv(t) = w(t) - E[w(t)lx(t)] (2.7)

E[wZ(t)C2V(t)] = I- B T (m(t))Pj 1(m(t))B(m(t)) (2.8)

- Q(m(t))

Note that zi(t) is a white noise process along all upward paths on the tree - i.e. zi3(s)

and Ci(t) are uncorrelated if t = y-rs or s = -rt for some r; otherwise zi(s) and dz(t)

are not uncorrelated.

1Once again if A is invertible, if P=(t) = P, at any single node, P,(t) = P, at all nodes.
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In [7] we consider the estimation of the stochastic process described by eq.(2.2)

based on the measurements

y(t) = C(m(t))x(t) + v(t) (2.9)

where {v(t),t E T} is a set of independent zero-mean Gaussian random variables

independent of x(0) and {w(t), t E T}. The covariance of v(t) is R(m(t)). The model

eq.(2.9) allows us to consider multiple resolution measurements of our process. The

single resolution problem, i.e. when C(m) = 0 unless m = M(the finest level), is also

of interest as it corresponds to the problem of restoring a noise corrupted version of

a stochastic process possessing a multi-scale description.

Three different algorithm structures are described in [7]. One of these is a general-

ization of the well-known Rauch-Tung-Striebel(RTS) smoothing algorithm for causal

state models. Recall that the standard RTS algorithm involves a forward Kalman fil-

tering sweep followed by a backward sweep to compute the smoothed estimates. The

generalization to our models on trees has the same structure, with several important

differences. First for the standard RTS algorithm the procedure is completely sym-

metric with respect to time - i.e. we can start with a reverse-time Kalman filtering

sweep followed by a forward smoothing sweep. For processes on trees, the Kalman

filtering sweep must proceed from fine-to-coarse(i.e. in the reverse direction from

that in which the model eq.(2.2) is defined) followed by a coarse-to-fine smoothing

sweep2. Furthermore the Kalman filtering sweep, using the backward model eq.'s(2.5-

2.8) is somewhat more complex for processes on trees. In particular one full step of

the Kalman filter recursion involves a measurement update, two parallel backward

predictions(corresponding to backward prediction along both of the paths descending

from a node), and the fusion of these predicted estimates. This last step has no

counterpart for state models evolving in time and is one of the major reasons for the

differences between the analysis of temporal Riccati equations and that presented in

this paper.
2 The reason for this is not very complex. To allow the measurement on the tree at one point to

contribute to the estimate at another point on the same level of the tree, one must use a recursion
that first moves up and then down the tree. Reversing the order of these steps does not allow one
to realize such contributions.
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x(tlt) is based on measurements in

t

x(tIt+) is based on
measurements in A
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Figure 2: Representation of Meaurement Update and Merged Estimates

To begin let us define some notation:

Yt = {y(s)ls = t or s is a descendent of t}

= {y(s)ls E (ct,/)*t, m(s) < M} (2.10)

Yt+ = {y(s)is E (ce,/)*t , t < m(s) < M} (2.11)

i(-It) = E[x(.)lYt] (2.12)

I(.It+) = E[x(.) IYt+] (2.13)

The interpretation of these estimates is provided in Figure 2.

As developed in [7], the Kalman filter and Riccati equation recursions have the fol-

lowing steps. To begin, consider the measurement update. Specifically, suppose thati p 
I p \/ 
i p 
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we have computed x(tlt+) and the corresponding error covariance, P(m(t)lm(t)+);

the fact that this depends only on scale should be evident from the structure of the

problem. Then, standard estimation results yield

I(tlt) = 5(tlt+) + K(m(t))[y(t) - C(m(t))x(tlt+)] (2.14)

K[(m(t)) = P(m(t) Im(t)+)CT (m(t))V-l(m(t)) (2.15)

V(m(t)) = C(m(t))P(m(t)lm(t)+)CT(m(t)) + R(m(t)) (2.16)

and the resulting error covariance is given by

P(m(t)lm(t)) = [I - K(m(t))C(m(t))]P(m(t)lm(t)+) (2.17)

Note that the computations begin on the finest level(m(t)=M) with x(tlt+) = 0,

P(MIM+) = P=(M).

Suppose now that we have computed 5(atlat) and x(/3tl/t). Note that Yt and

Ypt are disjoint and these estimates can be calculated in parallel. Furthermore, once

again they have equal error covariances, P(m(t) + llm(t) + 1). We then compute

x(tlct) and x(tlPt) which are given by

x(tlat) = F(m(t) + 1)x(atlat) (2.18)

x(tlflt) = F(m(t) + 1)&i(,tl[t) (2.19)

with corresponding identical error covariances given by

P(m(t)lm(t) + 1) = F(m(t) + 1)P(m(t) + lim(t) + 1)FT (m(t) + 1) + Q(m(t) + 1)

(2.20)

Q(m(t) + 1) = A-l(m(t) + 1)B(m(t) + l)Q(m(t) + 1)B T (m(t) + 1)A-T(m(t) + 1)

(2.21)

These estimates must then be fused to form x(tlt+) as follows:

1(tlt+) = P(m(t)lm(t)+)P-'(m(t)lm(t) + l)[:(tlat) + x(tlft)]

(2.22)

P(m(t)lm(t)+) = [2P-l(m(t)lm(t) + 1) - P'(t)]- ' (2.23)
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The interpretation of these equations is that we are fusing together two estimates

based on independent sources of information, namely Y,t and Yst, and on one common

information source, namely the prior statistics of x(t). Eq.(2.23) ensures that this

common information is accounted for only once in the fused estimate.

The analysis in the remainder of this paper focuses on the upward Kalman filtering

sweep. For completeness we describe the subsequent downward smoothing sweep.

Specifically, when we reach the top node of the tree, the resulting updated estimate is

the smoothed estimate at that point which then serves as the initial condition for the

downward recursion along the tree. This recursion combines the smoothed estimate

s,(y-lt) with the filtered estimates from the upward sweep to produce xs(t):

xs(t) = x(tlt) + P(m(t)]lm(t))FT(m(t))P-l,(m(t) _ Iira(t)) [xs(ff-lt) - (7-1tlt)]
(2.24)
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3 Maximum Likelihood Estimator

In this section we examine the difficulties in analyzing our filtering equations. These

difficulties point to the need to decompose the filter into two parts; one representing

the filter initialized with no prior information, the ML filter, and the other represent-

ing our estimate of the mean of the process.

We rewrite the set of Riccati equations for our filtering problem as follows.

P(mlm + 1) = F(m + 1)P(m + lIm + 1)FT (m + 1)

+ G(m + 1)Q(m + 1)GT(m + 1) (3.1)

-l(mlm) = P-l(mIm + ) + CT(m)R-l(m)C(m) (3.2)

P-l(mlm+) = 2P-l(mlm + 1) - P,-(m) (3.3)

where

G(m(t)) = -A-l(m(t))B(m(t)) (3.4)

Note that we can combine eq.(3.2,3.3) into the following single equation.

P-'(mlm) = 2P-l(mlm + 1) - P-l(m) + CT(m)R-(m)C(m)

= P-l(mlm + 1) + CT(m)R-l(m)C(m)

+ P-l(mlm + 1) - P-l(m) (3.5)

The Riccati equations for our optimal filter, eq.'s(3.1-3.3), differ from standard

Riccati equations in two respects: 1) the explicit presence of the prior state covariance

Px(m(t)) and 2) the presence of a scaling factor of 2 in eq.(3.3). The scaling factor is

intrinsic to our Riccati equations and is due to the fact that we are fusing pairs of

parallel information paths in going from level to level. The presence of P (m(t)) in the

Riccati equations accounts for the double counting of prior information in performing

this merge.

The presence of this term points to a significant complication in analyzing this

filter. Specifically, in standard Kalman filtering analysis the Riccati equation for

the error covariance can be viewed simply as the covariance of the error equations,
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which can be analyzed directly without explicitly examining the state dynamics since

the error evolves as a state process itself. This is apparently not the case here

because of the explicit presence of P,(m) in eq.(3.5). Indeed as we show later in

this section, if one examines the backward model eq.'s(2.5-2.8) and the Kalman filter

eq.'s(2.14,2.18,2.19,2.22) one finds that the upward dynamics for the error x(t) -5x(t t)

are not decoupled from x(t) unless Pxl(m(t)) = 0. This motivates the following

decomposition of the estimator into a dynamic part based on Px1 = 0(the ML esti-

mator) followed by a gain adjustment to account for prior information.

To be precise, let PML(mlm + 1) and PML(mlm) denote the estimates produced

by our upward Kalman filter assuming that P; l(m) = 0. These satisfy the following

Riccati equation, which doesn't depend explicitly on Px(m).

PML(mlm + 1) = F(m + l)PML(m + lm+ 1)FT(m + 1) + G(m + l)Q(m + 1)GT(r + 1)

(3.6)

P(L(mIm) = 2PM(Lr(mIm +1) + C T (m)R'-(m)C(m) (3.7)

Note that the filtering equations for the ML estimator correspond exactly with the

equations for the optimal(Bayesian) filter with PML(mlm) and PML(mlm + 1) being

substituted for P(mlm) and P(mlm + 1). We refer to these as the ML filtering

equations.

Before elaborating further on the ML estimator, we describe its relationship to

the optimal estimator. The two are related in the following way.

x(tlt) = P(m(t)lm(t))PMDl(m(t) m(t))~ML(tlt) (3.8)

P-l(m(t)lm(t)) = PML(m(t)Im(t)) + PZl(m(t)) (3.9)

To derive these relationships we start by writing

Yt = 7Htx(t) + 0(t) (3.10)

where

E[O(t)xT (t)] = 0 (3.11)

E[O(t)OT(t)] = lt (3.12)
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Recall that Yt is the set {y(s)ls = t or s is a descendent of t}. Eq.(3.10) follows

directly from our downward model for the process x(t) on the tree. From eq.(3.10)

we can write the following maximum likelihood estimate.

XML(tlt) = (7 t tl- Ht)7 tTRt1yt (3.13)

PML(m(t)[m(t)) = ~t -1Tt (3.14)

Note that kML(tIt) can be computed using ML filtering equations. This is true since

the ML filter computes the best estimate in the sense of minimizing the mean-square

error given no initial prior information, which from the invertibility of F(m) and

from our Lyapunov equation for the evolution of the state covariance is equivalent

to the best estimate at some point t given P -l(m(t)) = 0. Furthermore, since 0(t) is

uncorrelated with x(t) we can write the Bayesian estimate as follows.

k(tlt ) = P-l(m(t)rm(t))(PML(m(t)lm(t))ML(tlt) + Px l (t)m(x(t)))

(3.15)

P-l(m(t)(t)Im(t)) = PML(m(t)lm(t)) + P-(m(t)) (3.16)

where m(x(t))) is the mean of x(t). But since we consider x(t) to be a zero-mean

process eq.(3.15) and eq.(3.8) are equivalent.

There are several reasons for viewing the optimal estimator in this way. One is

that the ML Riccati equations are simpler because they do not include the explicit

presence of the prior information Pxl(m(t)). This simplicity is significant in that

the ML Riccati equations are readily amenable to stability analysis. The important

reason mentioned previously for focusing our analysis on the ML filter, and perhaps

a deeper one, is that the error dynamics for the optimal filter cannot be written as

a noise driven process with closed-loop dynamics whereas the error dynamics for the

ML filter can. Let us flesh out this last point in more detail.

Let us begin by examining the dynamics of our filter in the upward sweep of the

RTS algorithm, eq.'s(2.14-2.17, 2.18-2.21,2.22,2.23). We can rewrite the dynamics of

the filter in update form, eq.(2.14), as follows.

I(tlt) = L(m(t))F(m(t) + 1)(x(atatt) + x(otlft))
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+ K(m(t))y(t) (3.17)

L(m(t)) = P(m(t)Im(t))P-l(m(t)Im(t) + 1) (3.18)

We can also write the dynamics for our process in a similarly symmetric form.

x(t) = lF(m(t) + 1)[x(at) + x(Qt)] + 1G(m(t) + 1)[zb(at) + wz(/t)] (3.19)

We can easily rewrite eq.(3.17) as

x(tlt) = (I- K(m(t))C(m(t)))L'(m(t))F(m(t) + l)(i(atlat)

+ {(Ptl/t)) + K(m(t))y(t) (3.20)

L'(m(t)) = P(m(t)tm(t)+)P-'(m(t)Im(t) + 1) (3.21)

By doing straightforward manipulations on eq.(3.20) and eq.(3.19) we can get

-(tlt) = (I- K(m(t))C(m(t)))x(t) - K(m(t))v(t)

- (I - K(m(t))C(m(t)))L'(m(t))F(m(t) + 1)((c(atlat) + x(/3tl/it))

(3.22)

g(tlt) = x(t) - (tt) (3.23)

The difficulty in proceeding any further with eq.(3.22) lies in the presence of the term

L'(m(t)). In standard filtering L'(m(t)) = I; said another way there is no difference

between P(m(t)lm(t)+) and P(m(t)lm(t) + 1). Let us write down the equations for

the ML filter and its corresponding error.

XML(tlt) = 2(I - KML(m(t))C(m(t)))F(m(t) + 1)(xML(atjcat) + XML(itI3t))

+ IKML(m(t))y(t) (3.24)

XML(tlt) = (I - IML(m(t))C(m(t)))X(t) - KML(m(t))v(t)

- (I - KML(m(t))C(m(t)))F(m(t) + 1)(xML(atlat) + XML(/tI3t)

(3.25)
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By substituting eq.(3.19) into eq.(3.25) we get

XML(tIt) = -(I - KML(m(t))C(m(t)))F(m(t) + 1)(kML(ratlat) + XML(itl3t)

+ (I- KML(m(t))C(m(t)m(t)))G(m(t) + 1)(d(t) + Zv(/3t)) - KML(m(t))v(t)

(3.26)

Note that eq.(3.26) has the same algebraic structure as the the equations for the error

dynamics of the standard Kalman filter except for the scaling factor of 2 and the fact

that there are two terms in the immediate past being merged. Both the scaling factor

and the merging of pairs of points is crucial to the study of the stability of the filter.

As we will see in Section 7 the appropriate scaling factor is necessary for controlling

in some sense the potential growth that might occur in merging points.

Also, for future reference, let us rewrite eq.(3.26) using the following equality:

-(I - KML(m(t))C(m(t))) = PML(m(t)Im(t))PMKL(m(t)lm(t) + 1) (3.27)

We can rewrite eq.(3.26) as

· XML(tlt) = PML(m(t)Im(t))PML~(m(t)Im(t) + 1)F(m(t) + 1)(iML(atlCat) + XML(/t1I3t)

+ PML(m(t)lm(t))PMjL(m(t)lm(t) + l)G(m(t) + 1)((3c(at) + a3(3t)) - IML(Lm(t))V(t)

(3.28)
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4 Reachability, Observability, and Reconstructibil-

ity

In this section we develop certain system theoretic constructs which are useful in

analyzing both the stability and the steady-state characteristics of our filter. In

particular we define notions of reachability, observability, and reconstructibility on

dyadic trees in terms of system dynamics going up the tree.

4.1 Upward Reachability

We begin with the notion of reachability for a system defined going up a tree. Anal-

ogous to the standard time-series case, reachability involves the notion of being able

to reach arbitrary states at some point t on the tree given arbitrary inputs in the

past where in the case of processes evolving up a tree the past refers to points in the

subtree under t. Recall that we can rewrite the dynamics for our backward process

up the tree, eq.(2.5), in the following form.

I 1
x(t) = .F(m(t) + 1)[x(at) + x(t) G(mt)]) + l)[t(at) + ti4(Pt)] (4.1)

Also, recall that in our backward model tJ'(t) is a white noise process along upward

paths on the tree. For the analysis of reachability, however, we simply view rS(t) as

the input to the system eq.(4.1).

We define the following vectors,

XM,to - [xT(oaMto),x T(/oM-lto), ... xT(oMto)]T (4.2)

WM, to - [t T((mto)to) ... w T(3Mto) ]T (4.3)

which have the following interpretation. Consider an arbitrary point on the tree,

to. The vector XM,to denotes the vector of 2M points at the Mth level down in the

subtree under to; i.e. XM,tO includes all of the nodes at this level that influence the

value of x(to). The vector WM,tO comprises the full set of inputs that influences x(to)

starting from initial condition XM,to, i.e. the tZ(t), in the entire subtree down to M

levels from to. We define upward reachability to be the following.
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Definition 4.1 The system is upward reachable from XM,to to x(to) if given any

XM-,to and any desired Y(to), it is possible to specify WM,to so if XM,to = XM,to, then

x(to) = Y(to).

In studying conditions for reachability since we are given XM,to, we can set it equal

to zero without loss of generality. Note that if XM,to = 0, then we have

x(to) = glfM,to (4.4)

where

5 - [9(0) 9(0) 9(1) 9(1) 9Q(1) 9(1) .............. (4.5)

T(M- 2) . (M -2) _(M -1)_ (M -1)

2 M-1 times 2 M times

T(i) ()i+lO(m(to),m(to) + i)G(m(to) + i + 1) (4.6)

I Ml = m2
q5(m1 ,m 2) i I (47)

, F(ml + 1)4(ml + 1,m 2) ml < m2

O(m-1,m) _ F(m) (4.8)

Let us also define the following quantity.

Definition 4.2 Upward-reachability Grammian

1R(to, M) _ ST

M-1

= E 2-i-1 q(m(to), m(to) + i)G(m(to) + i + 1)
i=O

x GT(m(to) + i + 1)OT(m(to), m(to) + i) (4.9)

From eq.(4.4) we see that the ability to reach all possible values of x(to) given arbitrary

inputs, WMt0,o depends on the rank of the matrix g. This, along with the fact that

the rank of g equals the rank of ggT, leads to the following, where x(t) is an n-

dimensional vector:

Proposition 4.1 The system is upward reachable from XM,to to x(to) iff g has

rank n iff R(to, M) has rank n.
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Note that TZ(to, M) bears a strong similarity to the standard reachability grammian

for the following system.

x(m) = lF(m + 1)x(m + 1) + lG(m + 1)u(m + 1) (4.10)

where the reachability grammian in this case is

M-1

1*(m, m + M) ' E 22-2(m, m + i)G(m + i + 1)
i=O

x GT(m + i + 1)OT(m,m + i)

= 5 (6 )

5* - [ (0) V(1) ....... x(M-2) T(M-1)] ......(4.11)

In fact it is evident from the definitions in eq.'s(4.5,4.11) that the rank of g is equiv-

alent to the rank of G*. This leads to the following corollary.

Corollary 4.1 The system is upward reachable from XM,to to x(to) iff for any

ce, f 0 *,Z(m(to),m(to) + M) has rank n, where R*1,(m(to),m(to) + M) is the

reachability grammian for the system

x(m) = acF(m + 1)x(m + 1) + /G(m + 1)u(m + 1) (4.12)

Note that if F and G are constant in eq.(4.1), then reachability is equivalent to the

usual condition, i.e. rank[GIFGI... IFM-1G] = n.

4.2 Upward Observability and Reconstructibility

We develop the notion of observability and the notion of reconstructibility on trees.

Defined on trees, observability corresponds to the notion of being able to uniquely

determine the points at the bottom of a subtree, i.e. the "initial conditions", given

knowledge of the inputs and observations in the subtree. It is also useful to develop

the weaker notion corresponding to being able to uniquely determine the single point

at the top of a subtree given knowledge of the inputs and observations in the subtree.

This notion is analogous to reconstructibility for standard systems; thus, we adopt

the same term for the notion on trees.
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Let us define

YM,to - [ yT(to)[ yT(ato), yT(,9t o)[ ... IyT(aMt), ... yT(IMto) ]T (4.13)

where

y(t) = C(m(t))x(t) (4.14)

Definition 4.3 The system is upward observable from XM,to to x(to) if given

knowledge of WM,to and YM,to, we can uniquely determine XM,to.

Note that if WVM,to = 0 then

YM,to = 7-MXM,to (4.15)

where 1HM is most easily visualized if we partition it compatibly with the levels of
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the observations in YM,to:

2 M blocks

0(0) 0(0) ... ... 0(0)

O(1) .. . o(i) .... .. o0

o ...... o (1) ... (1)

0(2) ... 0(2) 0 ... 0 ... 0 0 ... 0

O ... o 0(2) ... 0(2) 0 ... 0 0 ... 0

O ... o o ... o 0(2) ... 0(2) 0 ... 0

(M= 0 ... 0 0 . 0 0 ... 0 0(2)... 0(2)

o(M)0 ... O 

0 o(M).. ... 0

o 0 ... .. o(lM)

(4.16)

Here

O(i) ()M-iC(mto) + i)(m(to) + i), m(m(to + im(t M) (4.17)

As a simple example to help clarify the structure of the matrix TIM consider the
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matrix 1I2 for the scale-invariant case, i.e. where F(m) = F, C(m) = C.

1CF2 1CF 2 1CF2 1CF2

1 CF 1CF O 02 2

O 0 ½CF 1CF

j2= C 0 0 0 (4.18)

O C 0 0

O 0 C 0

O 0 0 C

That is, at level i, there are 2i measurements each of which provides information

about the sum of a block of 2
M - i components of XM,to. Note that this makes clear

that upward observability is indeed a very strong condition. Specifically, since suc-

cessively larger blocks of XM,tO are summed as we move up the tree, subsequent

measurements provide no information about the differences among the values that

have been summed. For example consider M = 1. In this case y(t) contains infor-

mation about the sum x(at) + x(p/t), and thus information about x(act) - x(Qt) must

come from y(cat) and y(St). This places severe constraints on the system matrices.

In particular a necessary condition for observability is that y have dimension larger

than '(otherwise X7 M has fewer rows than columns).

We also define the following.

Definition 4.4 Upward-observability Grammian

MM - A'-M (4.19)

where

Mk = U(k, O) (4.20)

U(k, k) - ( )2(k-i)T(m(to) + i, m(to) + k)C(m(to) + i)q(m(to) + i, m(to) + k)
i=O

(4.21)

C(k) - C T (k)C(k) (4.22)

U(k, ) + 1) S(k, 1
U(k, 1) S(k, 1) U(k, + 1) 1 (4.23)
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and S(k, I) is a block matrix with 2 k-l-1 x 2 k-l-1 blocks each of which equals

I 1
T(k, 1) = ( )2(k-i)0T(m(to)+i, m(to)+k)CT(m(to)+i)C(m(to)+i)k(m(to)+i, m(to)+k)

i=O
(4.24)

Once again we consider the scale-invariant case, this time in order to make explicit

the structure of the matrix MM. The following is M 2 for the scale-invariant case.

M 1 M 2 M 3 M3

M 2 M 1 M 3 M 3t2 = (4.25)
M 3 M 3 M 1 M 2

M3 M3 M2 M 1

where

M1 = 1F2TCTCF2+ IFCTCF + CTC (4.26)
16 4

M 2 = F2TCTCF2 + FCTCF (4.27)
16 4

M 3 = 1-F2TCTCF2 (4.28)
16

From eq.(4.15) we see that being able to uniquely determine XM,to from YM,to is

equivalent to requiring the null space of the matrix 7HM to be 0. This leads to the

following.

Proposition 4.2 The system is upward observable from XM,to to x(to) iff /'(7lM) =

0 if MM is invertible.

A much weaker notion than that of observability is the notion of reconstructibility.

Reconstructibility requires only the ability to determine the single point at the top

of a subtree given knowledge of the inputs and observations in the subtree.

Definition 4.5 The system is upward reconstructible from XM,to to x(to) if given

knowledge of WM,to and YM,to, we can uniquely determine x(to).

We also define the following.
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Definition 4.6 Upward-reconstructibility Grammian

O(to, M) = IMTM--t7 MITM
M

= 2iqT(m(to) + i, m(to) + M)CT(m(to) + i)
i=O

x C(m(to) + i)q(m(to) + i, m(to) + M) (4.29)

where

IM = [IlIl .. lI (4.30)

2 M times
and each I is an n x n identity matrix.

Note that if WtVM,tO = 0, then

x(to) = b(to)XM,to (4.31)

where

'!(to) (2 )M (m(to), m(to) + M)IM (4.32)

Since the condition of reconstructibility only requires being able to uniquely deter-

mine the single point x(to) from the measurements in the subtree, we guarantee

this condition by requiring that any vector in the nullspace, Nf(7iM), is also in the

nullspace, A((D(to)). We thus have the following, the proof of which can be found in

the appendix.

Theorem 4.1 The system is upward reconstructible iffA/(-) C A/'(O(to)). If

F(m) is invertible for all m, this is equivalent to the invertibility of O(to, M).

Note that O(to, M) bears a strong similarity to the standard observability grammian

for the following system.

x(m) = aF(m + 1)x(m + 1) + G(m + 1)u(m + 1) (4.33)

y(m) = /C(m)x(m) (4.34)

where the observability grammian in this case is
M

O,C,(m(to), m(to) + M) A E 2(M-i)p2qT(m(to) + i, m(to) + M)CT(m(to) + i)
i=o

x C(m(tO) + i)(m(to) + im(to) + M) (4.35)
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Corollary 4.2 Assuming that F(m) is invertible for all m, the system is upward

reconstructible from XM,to to x(to) iff O,,p(m(to), m(to) + M) has rank n.

As a final note, let us comment on some similarities and differences between these

concepts and results and those for standard temporal systems. First, for standard

systems observability implies reconstructibility and the two concepts are equivalent

if the state transition matrix is invertible. In our case, observability certainly implies

reconstructibility, but the former remains a much stronger condition even if q is in-

vertible. In this case reconstructibility is equivalent to being able to determine the

average values of the components of the initial state [6]. Note that in contrast our

reachability concept going up the tree is actually rather weak since we have many

control inputs in the subtree to achieve a single final state x(to). As one might ex-

pect there is a dual theory for systems defined moving down the tree, but the tree

asymmetry leads to some important differences. In particular, weak and strong con-

cepts are interchanged. For example, observability is concerned with determining the

single initial state given observations in the subtree under to, while reconstructibility

corresponds to determining the entire vector XM,tO. In this case if g is invertible

observability is equivalent to determining the average value of XM,to. Similarly,

reachability is concerned with reaching arbitrary values for the entire vector XM,tO,

an extremely strong condition. A natural and much weaker condition is achieving an

arbitrary average value for XM,tO. A complete picture of this system theory will be

given in [6].
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5 Bounds on the Error Covariance of the Filter

In the following sections we will analyze the stability of our upward Kalman filter via

Lyapunov methods. As we will see our analysis of the ML filter will require bounds

on PML(mlm), and it will also be necessary to have bounds on P(mlm) in order to

infer stability of the optimal filter. Thus, in this section we begin by deriving strict

upper and lower bounds for the optimal filter error covariance P(mlm). We then

use analogous arguments to derive upper and lower bounds for the ML filter error

covariance PML(mim). Existence of these bounds depends on conditions that can be

expressed in terms of the notions of upward reachability and upward reconstructibility

developed in the previous section.

Recall our system whose dynamics are described by eq.(4.1) and whose measure-

ments are described by eq.(4.14). We define the stochastic reachability grammian for

this system as follows.

Definition 5.1 Stochastic Reachability Grammian
M-1

Th(to, M) - E 2- i -' l (m(to),m(to) + i)G(m(to) + i + 1)
i=o

x Q(m(to) + i + 1)GT(m(to) + i + 1)OT(m(to), m(to) + i) (5.1)

We define the stochastic reconstructibility grammian for this system as follows.

Definition 5.2 Stochastic Reconstructibility Grammian
M

O(to, M) - A 2iqT (m(to) + i, m(to) + M)CT(m(to) + i)
i=o

x R-l(m(to) + i)C(m(to) + i)q(m(to) + i, m(to) + M) (5.2)

Among the assumptions that we make under which we prove our bounds is that

the matrices F(m), F-l'(m), G(m), Q(m), C(m), R(m), and R-1(m) are bounded

functions of m. In terms of our reachability and reconstructibility grammians these

assumptions mean that for any M0 > 0 we can find a, P > 0 so that

R(t,Mo) < aI for all t (5.3)

_0(t, Mo) < 8I for all t (5.4)
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We define the notion of uniform reachability as follows.

Definition 5.3 An upward system is uniformly reachable if there exists y, M0 > 0

so that

R(t, Mo) _> yI for all t (5.5)

This property insures that the process noise contributes a steady stream of uncertainty

into the state. Intuitively, we would expect in this case that the error covariance

P(mlm) would never become equal to zero. In fact we prove that under uniform

reachabilty P(mlm) is lower bounded by a positive definite matrix.

We also need the notion of uniform reconstructibility, which is formulated as

follows.

Definition 5.4 An upward system is uniformly reconstructible if there exists

S, Mo > 0 so that

O(t, Mo) > sI for all t (5.6)

where M is the bottom level of a tree.

This property insures a steady flow of information about the state of the system.

Intuitively, we would expect that under this condition the uncertainty in our esti-

mate remains bounded. In fact we prove that under the condition of uniform recon-

structibility the error covariance, P(mlm), is upper bounded.

Without loss of generality we can take Mo to be the same in eq.'s(5.3-5.6) for any

system which is uniformly reachable and reconstructible.

5.1 Upper Bound

We begin by deriving an upper bound for the optimal filter error covariance, P(mlm).

The general idea in deriving this bound is to make a careful comparison between the

Riccati equations for our optimal filter and the Riccati equations for the standard

Kalman filter. First consider the following lemma.
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Lemma 5.1 Given the Riccati equation

P(mlm + 1) = F(m + 1)P(m + lIm + 1)FT(m + 1)

+ G(m + 1)Q(m + 1)GT(m + 1) (5.7)

P-l(mlm) = P-l(mlm + 1) + CT(m)R-1(m)C(m)

+ P-'(mlm + 1) - Pl1(m) (5.8)

and the Riccati equation

P(mlm + 1) = F(m + 1)P(m + lm + l)F T (m + 1)

+ G(m + 1)Q(m + 1)GT(m + 1) (5.9)

-l(mlm) = P-1(mlm + 1) + C T (m)R-1(m)C(m) (5.10)

we have that

- 1(mlm) < P-l(mjm) (5.11)

Proof

We first note that eq.(5.8) can be rewritten as

P-l(mlm) = P-l(mlm + 1) + CT(m)R-1(m)C(m) + DT(m)D(m) (5.12)

where DT(m)D(m) is positive semi-definite. This follows from the fact that

P(mlm + 1) < P,(m) or P-l(mlm + 1) - P;l(m) > 0. The Riccati equation,

eq.'s(5.9,5.10), characterizes the error covariance for the optimal filter corresponding

to the following filtering problem.

x(m) = F(m + 1)x(m + 1) + G(m + 1)w(m + 1) (5.13)

E[w(m)wT(m)] = Q(m) (5.14)

y(m) = C(m)x(m) + v(m) (5.15)

E[v(m)vT(m)] = R(m) (5.16)

Similarly, the Riccati equation, eq.'s(5.7,5.12), characterizes the error covariance for

the optimal filter corresponding to the filtering problem involving the same state
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equation, eq.(5.13,5.14), but with the following measurement equation.

(m) = D(m) x(m) + u(m) (5.17)

E[u(m)uT (m)] = [ R(m) 0 (5.18)

Since the filter corresponding to eq.(5.7,5.12) uses additional measurements compared

to the filter corresponding to eq.(5.9,5.10), its error covariance can be no worse than

the error covariance of the filter using fewer measurements; i.e. P(mlm) < P(mlm)

or P- 1 (mlm) < P-'(mlm).

We now state and prove the following theorem concerning an upper bound for

P(mIm).

Theorem 5.1 Given uniform upper boundedness of the stochastic reconstructibility

grammian, i.e. eq.(5.4), and given uniform reconstructibility of the system there exists

, > 0 such that for all m at least Mo levels from the initial level P(mlm) •< i.

Proof

Consider the following set of standard Riccati equations.

P(mlm+l 1) = F(m + 1)P(m+llm +1)F T (m+1)

+ G(m + 1)Q(m + 1)GT(m + 1) (5.19)

P--1(mm) = p-l(m Im + 1) + C T (m)R-'(m)C(m) (5.20)

From standard Kalman filtering results we know that given (F(m), R- (m)C(m)) is

a uniformly observable pair that is bounded above, there exists a r, > 0 such that
--(mm) < cI or P-1(ml m ) > -1'I. But by Corollary 4.2, (F(m),R-½(m)C(m))
P(mlm) < ,¢I or P5 

being a uniformly observable pair is equivalent to the original system being uniformly

reconstructible. Also, the grammian (F(m), R-(m)C(m)) being bounded above is

equivalent to our assumption of uniform upper boundedness of the stochastic recon-

structibility grammian. Thus, under uniform reconstructibility and the uniform upper
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boundedness of the stochastic reconstructibility grammian of the original we deduce

that P -(mlm) > c-l'I. But from Lemma 5.1 we know that P-l(mlm) < P-l(mlm).

Thus, P-l(mlm) > Is-1I or P(mlm) < dI.

We can easily apply the previous ideas to derive an upper bound for PML(mlm).

Note that Lemma 5.1 would still apply if eq.(5.8) did not have the Pl'(m) term; i.e.

the lemma would apply to the case of the ML Riccati equations. Then by using the

same argument used to prove Theorem 5.1 we can show the following theorem.

Theorem 5.2 Given uniform upper boundedness of the stochastic reconstructibility

grammian, i.e. eq. (5.4), and given uniform reconstructibility of the system there exists

A' > 0 such that for all m at least Mo levels from the initial level PML(mlm) •< r'I.

5.2 Lower Bound

We now derive a lower bound for P(m Im). As in deriving the upper bound, we appeal

heavily to standard system theory.

Lemma 5.2 Let

S(mm) (P- ( - C T (m)R-'(m)C(m) + P-l'(m)) (5.21)

S(mjm - 1) ~ F-T(m + 1)p-l(m + rlm + 1)F-'(m + 1) (5.22)

Given the Riccati equation

S*(mlm + 1) = 2F-T(m + 1)S*(m + lrlm + 1)F-'(m + 1)

+ F-T(m + 1)CT(m)R-l(m)C(m)F-l(m + 1) (5.23)

S*l (mlm) = S*- (mlm + 1) + G(m + 1)Q(m + 1)GT(m + 1) (5.24)

where S(010) = S*(010). Then for all m S*(mlm) > S(mlm).

Proof
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By substituting eq.(5.12) into eq.(5.21) and collecting terms we get

S(mlm) = P-l'(mlm + 1) (5.25)

By substituting eq.(3.1) into eq.(5.25) we arrive at

S(mlm) = [F(m + 1)P(m + llm + 1)F T (m + 1)

+ G(m + 1)Q(m + 1)GT(m + 1)]-1

= S- 1'(mlm + 1) + G(m + 1)Q(m + 1)GT(m + 1)]-1 (5.26)

where the the last equality results from the substitution of eq.(5.22). Also, by sub-

stituting eq.(5.21) into eq.(5.22) and collecting terms we get

H(mlm + 1) = 2F-T(m + 1)S(m + llm + 1)F-l(m + 1)

+ F-T(m + 1)CT(m)R- 1(m)C(m)F-l(m + 1)

- F-T(m + 1)P7-'(m)F-l(m + 1) (5.27)

Now we prove by induction that for all m S*(mlm) > S(mlm). Obviously, S*(010) >

S(00). As an induction hypothesis we assume S*(i + 1 ii + 1) > S(i + 1 ii + 1). From

eq.(5.27), eq.(5.23), and the fact that F-T(m + 1)P;-l(m)F-'(m + 1) > 0 we get that

S* -(ili 1) -l(ili) (5.28)

Substituting eq.(5.24) and eq.(5.26) into eq.(5.28) and cancelling terms we arrive at

S*-(iji) < S-1(iji), i.e. S*(iji) >_ S(iji).

Theorem 5.3 Given uniform upper boundedness of the stochastic reachability gram-

mian, i.e. eq.(5.3), and given uniform reachability of the system there exists L > 0

such that for all m at least Mo levels from the initial level P(mlm) > LI.

Proof
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Consider the following set of standard Riccati equations.

S*(mlm + 1) = 2F-T(m + 1)S*(m + lIm + 1)F-l(m + 1)

+ F-T(m + 1)CT(m)R-l(m)C(m)F-l(m + 1) (5.29)

S*- (mlm) = S*- (mlm + 1) + G(m + 1)Q(m + 1)GT(m + 1) (5.30)

From standard Kalman filtering results we know that if (F-T(m),G(m)Q2(m)) is

a uniformly reachable pair that is bounded above, then there exists N > 0 such

that S*(mlm) < NI. However, from Corollary 4.1 and the invertibility of F(m)

the uniform reachability of the pair (F-T(m), G(m)Q2(m)) is equivalent to the orig-

inal system being uniformly reachable. Also, the grammian (F-T(m), G(m)Q(m))

being bounded above is equivalent to our assumption of uniform upper bounded-

ness of the stochastic reachability grammian. Thus, under uniform reconstructibility

and the uniform upper boundedness of the stochastic reconstructibility grammian of

the original we deduce that S*(mlm) < NI. But from Lemma 5.2 we know that

S*(mlm) > S(mlm). Thus, S(mlm) < NI. But from eq.(5.21) we get

(p-(m m) - C T (m)R-l(m)C(m) + P7-l(m)) < NI (5.31)

It follows straightforwardly that

P-l(mlm) < L-1I (5.32)

where

L-1I > 2NI + CT(m)R-l(m)C(m) (5.33)

Thus,

P(mlm) > LI (5.34)

Using analagous arguments we can derive a lower bound for PML(mlm). Note

that with following definitions S* obeys equations (5.23,5.24).

S*(mlm) - 2(PML(mIm) -_ C T (m)R-l(m)C(m)) (5.35)

S*(mlm + 1) = F-T(m + 1)PL(m + lm + 1)F'-(m + 1) (5.36)
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Using the same argument as in the proof of Theorem 5.3 with our current definitions

for S* we get that

1(PML(mlm) - C T (m)R-l(m)C(m)) < NI (5.37)

for N > 0. Equivalently,

PML,(mm ) < (L ' )-1I (5.38)

for

(L')-'I > 2NI + CT(m)R-l(m)C(m) (5.39)

Thus, we have the following theorem.

Theorem 5.4 Given uniform upper boundedness of the stochastic reachability gram-

mian, i.e. eq.(5.3), and given uniform reachability of the system there exists L' > 0

such that for all m PML(mlm) > L'I.
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6 Upward Stability on Trees

In this section we formalize the notion of stability for dynamic systems evolving up

the tree. The dynamics on which we are interested in focusing the major portion of

our analysis are the ML error dynamics of eq.(3.28). Thus the general class of systems

we wish to study here has the form

z(t) = .F(m(t) + 1)[z(at) + z(/3t)] + g(m(t))u(t) (6.1)

What we wish to do is to study the asymptotic stability of this system as the dynamics

propagate up the tree. Since we are interested in internal stability, we will consider

the autonomous system with u _ O.

Intuitively what we would like stability to mean is that z(t) -- 0 as we propagate

farther and farther away from the initial level of the tree. Note, however, that as we

move up the tree(or equivalently as the initial level moves farther down), z(t) is influ-

enced by a geometrically increasing number of nodes at the initial level. For example,

z(t) depends on {z(act), z(#/t)} or, alternatively on {z(c 2t), z(/3at), z(apt), z(/i2t)} or,

alternatively on {z(a3t), z(Cta2t), z(aclrt), z(P/2at), z(a 2it), z(p/at), z(a/c2t), z(/3t)},

etc. Thus in order to study asymptotic stability it is necessary to consider an infi-

nite dyadic tree, with an infinite set of initial conditions corresponding to all nodes

at the initial level. Note also, that we might expect that there would be a number

of meanings we could give to "z(t) -- 0" - e.g. do we consider individual nodes at a

level or the infinite sequence of values at all points at a level?

To formalize the notion of stability let us change the sense of our index of recursion

so that m increases as we move up the tree. Specifically, we arbitrarily choose a level

of the tree to be our "initial" level, i.e. level 0, and we index the points on this initial

level as zi(O) for i E Z. Points at the mth level up from level 0 are denoted zi(m) for

i E Z. The dynamical equations we then wish to consider are of the form

zi(m) = A(m - 1)(z 2 (m - 1) + Z2i+l (m - 1)) (6.2)

Let Z(m) denote the infinite sequence at level m, i.e. the set {zi(m) , i E Z}.
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The p-norm on such a sequence is defined as

IIZ(m)llp - (Z IIZi(m)llP)P (6.3)
i

where llzi(m)llp is the standard p-norm for the finite dimensional vector zi(m).

We define the following notion of exponential stability for a system.

Definition 6.1 A system is lp-exponentially stable if given any initial sequence Z(O)

such that IIZ(O)lIP < °0,
IIZ(m)llp < CamlIIZ(O)llp (6.4)

where 0 < a < 1 and C is a positive constant.

From eq.(6.2) we can easily write down the following.

zi(m) = 4)(m,0) E zj(0) (6.5)
jEOm,i

where the cardinality of the set Om,j is 2m and for ml > m2

(ml, M2) = I ml, M2 I(6.6)
A(ml - 1)4(ml - 1,m 2) ml > m 2

As in the case of standard dynamic systems it is the state transition matrix, D(m, 0),

which plays a crucial role in studying stability on trees. However, unlike the standard

case, as one can see from eq.(6.5), the nature of the initial condition that influences

zi(m) depends crucially on m; in particular the number of points at level 0 to be

summed up and scaled to give zi(m) is 2m. These observations lead to the following:

Theorem 6.1 The system defined in eq. (6.2) is lp-exponentially stable if and only if

m(p-1)

2 P jl,(mO)lIp<K)'m for allm (6.7)

where 0 < y < 1 and K' is a positive constant.

Proof



6 UPWARD STABILITY ON TREES 36

Let us first show necessity. Specifically, suppose that for any K > 0, 0 < y < 1,

and M > 0 we can find a vector z and an m > M so that

Ilb(m, 0)zllP > Kym2 - IIZIIP (6.8)

where
1 1
- + - = 1 (6.9)
P q

Let z and m be such a vector and integer for some choice of K, 7, and M, and define

an initial sequence as follows. Let po, Pi, P2, ... be a sequence with
00

EPiP= i (6.10)
i=O

Then let
poz O < i < 2m

p1 Z 2m <i < 2.2 m

zi(O) = : (6.11)

Piz j2 m < i < (j + 1)2 m

Note that
00

IIZ(O)IIP = IIzi(O)llp
i=O

= 2mllzllP (6.12)

Also, note that

(i+1)2m--1

zi(m) = ((m, 0) E zj(0)
j=i2m

= 2 m pi ( (m, O)z (6.13)

Thus,

IlZ(m)llP = 2mPllm(m,0)z ll P
-mp

> 2mPKP/mp2 m llZ ilP

= 2mPKPmp2mp2-m IIZ()llPI

= KICPmllZ(O0)ll (6.14)
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where the first equality comes from eq.(6.10), the inequality from eq.(6.8), the next

equality from eq.(6.12), and the last equality from eq.(6.9). Hence for any K, 0 <

7 < 1 and M > 0 we can find an initial lp-sequence Z(0) and an m > M so that

IlZ(m)llp > K mIllZ(O)llp (6.15)

so that the system cannot be /p-exponentially stable.

To prove sufficiency we use the following.

Lemma 6.1 A system is lp-exponentially stable if for every i

IIzi(m)lip < KJm( E Ilzj(O)llP); (6.16)
jEOm,i

where 0 < p < 1 and K is a positive constant.

Proof

By raising both sides of eq.(6.16) to the pth power we get

IIzi(m)IIP < IKP(P)m E llZj(0)llp (6.17)
jEOm,i

Since eq.(6.17) holds for every i we can write

Ilzi(m)ll P < KP(pP)m y IIz(O0)lI (6.18)

The lemma follows from raising both sides of eq.(6.18) to the power of -.

Lemma 6.2 Consider the sequence of vectors xi for i E Z. Then, for any m and

any j
q 1

II E xilp < 2m( E IIxiIP)p (6.19)
iEOm,j iEOm,j

where Om,j = {j,j + 1,...j + 2m - 1} and q satisfies eq.(6.9).

Proof
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We first show the following.

1ka + bllP < 2 (IlaIIp + IlblljP) (6.20)

Since 11 IIP is a convex function, we can write

1 1 1
()a + (1 -)bJp < (l)lallpIP + (1- )1blp (6.21)

2 2 p 2 p

from which eq.(6.20) follows immediately. We now show the result by induction on

m. Suppose for all j

1I E xillp < 22( E IIxllIp)p (6.22)
iEOmj iEOm,j

Consider the summing xi over the two sets Om,j, and Om,j2 where j2 jl + 2m. From

eq.(6.20) we get

I1( E xi + E xi)IIp < 2'(Il( E xijP + Il( E xill)p (6.23)
iEOm,jj iEOOm,j 2 iEOm,,j, iEOm, 2

Then by substituting into eq.(6.22) eq.(6.23) we get

(r+l) I
II1 xillp < 2 (1( E xiP + I1( E xiIP)P (6.24)

iEOm,j1 UOm,,j 2 iEOm,, iEm, ,j2

We can now show sufficiency thereby completing the proof of the theorem. By

applying the p-norm to eq.(6.5) and using the Cauchy-Schwarz inequality we get

lzi(m)llP <- Pl(m,O)llpl E ZJ(0)llp (6.25)
jEOm,i

Using Lemma 6.2, we get

IIzi(m)IIp < Ilk(m,O)I p2M ( Z IlzI(j(O)lP) (6.26)
jEOm,i

By substituting eq.(6.7) into eq.(6.26) we get

Ilzi(m) ,p < K'ym ( ~ IIlZj(O)IIP) (6.27)
jEOm,i
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which by Lemma 6.1 shows the system to be Ip-exponentially stable.

Note that referring to eq.'s(6.2,6.5,6.6) we see that the p,-exponential stability of

eq.(6.2) is equivalent to the usual exponential stability of the system

((m) = 2 -'A(m - 1)~(m - 1) (6.28)

For example for p = 2, we are interested in the exponential stability of

((m) = x2A(m - 1)¢(m - 1) (6.29)

If A is constant this is equivalent to requiring A to have eigenvalues with magnitudes

2 -

Note also that it is straightforward to show that if one considers the system with

inputs and outputs

zi(m) = A(m - 1)(z2 i(m - 1) + z2i+l(m - 1))

+ B(m - 1)(u2 i(m - 1) + u2i+l(m - 1)) (6.30)

yi(m) = C(m)zi(m) (6.31)

then if 13(m) and C(m) are bounded, the asymptotic stability of the undriven dynamics

imply bounded-input/bounded-output stability.

7 Filter Stability

In this section we show that the error dynamics of the maximum likelihood filter are

stable and also that the same is true of the overall filter.

Theorem 7.1 Suppose that the system is uniformly reachable and uniformly re-

constructible. Then, the error dynamics of the maximum likelihood filter are 12-

exponentially stable.

Proof
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The following proof follows closely the standard proof for stability of discrete-time

Kalman filters given in [9]. Based on the comments at the end of the preceding section

and on the ML error dynamics of eq.(3.28), we see that we wish to show that the

following causal system is stable in the standard sense.

z(m) = PML(mIm)PjL(mmM - 1) F(m - )z(m- 1) (7.1)

Theorem's 5.2 and 5.4, i.e. the upper and lower bounds on PML(mlm), allow us to

define the following Lyapunov function.

V(z,m) - z T (m)PML(mIm)z(m) (7.2)

Let us also define the following quantity.

~(m) - V2F(m- 1)z(m-1) (7.3)

= PML(mm - 1)PM[L(mIm)z(m) (7.4)

Substituting eq.(3.7) into eq.(7.2) followed by algebraic manipulations, one gets

V(z,m) = z T (m)(2PML(mm -1) + C T (m)R-l(m)C(m))z(m) (7.5)

= 2z T (m)(PM±L(mIm) -2PM(mim - 1))z(m) - zT (m)C T (m)R-l(m)C(n))z(rn)

+ zT (m)(2PML(mm - 1))z(m)

+ Tm) pM(mI)m-1) z(M) zT(M)PML(mIm-(1) /) (7.6)

= -(V/rz(m)- v(m))TPML(mIm_ 1)(Vrz(m)- m)

- z T (m)C T (m)R-l(m)C(m)z(m) + Z (m)P(mm - 1)z(m) (77)

But note that by using the matrix inversion lemma we get

:(m)pMPL(mIm - 1 7 (m) = V(z,m- 1) - A (7.8)

A > 0 (7.9)

It follows that

V(z,m) -V(z,m -1) -( (m) - ) ( 1)/ -2

- zT(m)CT(m)R-l(m)C(m)z(m) (7.10)
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Stability follows from eq.(7.10) under the condition of uniform observability of the

pair (F(m), R-(m))C(m) which by Corollary 4.2 is equivalent to uniform recon-

structibility of the system.

Let us now examine the full estimation error after incorporating prior statistics.

It is straightforward to see that

x(tjt) = P(m(t)Im(t))(PIL(m(t)Im(t))xML(tlt) + P -l(m(t))x(t)) (7.11)

Thus we can view x(tlt) as a linear combination of the states of two upward-evolving

systems, eq.(3.28) for XML(tlt) and one for Px'l(m(t))x(t). Note first that since

P(mlm) < PML(mlm)

[IP(m(t)Im(t))P~L(m(t)Im(t))iML(tlt ) II < IIML(tjt)II (7.12)
and we already have the stability of the XML(t It) dynamics from Theorem 7.1. Turning

to the second term in eq.(7.11), note first that thanks to Theorem 5.1, P(m(t)lm(t))

is bounded. Note also that the covariance of Px- (m(t))x(t) is simply Pp-l(m(t)).

By uniform reachability Px-l(m(t)) is bounded above. Thus, while Px(m(t)) might

diverge, the contribution to the error of the second term in eq.(7.11) is bounded.

Also, our previous analysis allows us to conclude that the full, driven XML(t t)

dynamics are bounded-input, bounded-output stable from inputs it and v to output

XML(tlt). If we use eq.(3.19), together with eq.(2.3) and eq.'s(2.6-2.8) we can write

down the following upward dynamics for C(t) = Px-l(m(t))x(t):

M(t) = 1AT(m(t) + 1)(+(at) + ¢(Pt))

+ -N(m(t) + 1)(zt(at) + tii(/t)) (7.13)

where

N(m(t) + 1) = P.-l(m(t))A-'(m(t) + 1)B(m(t) + 1) (7.14)

Note that in general there is no reason to constrain the autonomous dynamics of

eq.(7.13) to be stable. However, if they are not, then reachability implies that

Px(m) -+ oo so that N(m) -- 0 and the covariance of t5 --* I. The bounded-input,

bounded-output stability of this system can be easily checked.
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8 Steady-state Filter

In this section we study properties of our filter under steady-state conditions; i.e. we

analyze the asymptotic properties of the filter. We state and prove several results.

First we show that the error covariance of the ML estimator converges to a steady-

state limit and that furthermore, the steady-state filter is 12-exponentially stable.

Theorem 8.1 Consider the following system defined on a tree.

x(t) = 1 F(x(at) + x(3t)) + lG(tw(cat) + i(/t)) (8.1)
2 2

y(t) = Cx(t) + v(t) (8.2)

E[ii(t)t7V(t)] = Q (8.3)

E[v(t)vT (t)] = R (8.4)

where v(t) is white and w(t) is white in subtrees. Suppose that (F, GQ½ ) is a reachable

pair and (F, R-2C) is an observable pair. The error covariance for the ML estimator,

PML(mlm), converges as m -oo to Po,, which is the unique positive definite solution

to

P- = FPFT + GQGT2 2

Koo( iCFPooFTCT + CGQGTCT + R)KT (8.5)
2 2

where

Koo = PoCTR- 1 (8.6)

Moreover, the autonomous dynamics of the steady-state ML filter, i.e.

e(t) = -(I - KC)F(e(at) + e(/t)) (8.7)

are 12-exponentially stable.

Proof



8 STEADY-STATE FILTER 43

Recall the Riccati equations for the ML estimator where the scale variable m

increases in the direction upward along the tree.

PML(mlm + 1) = FPML(m + ilm + l)F T + G QGT

(8.8)

P L(mlm) = 2PL(mim + 1) + CTR-lC (8.9)

Convergence of PML(mlm)

In order to show the existence of a limit of PML(mlm) as m -, oo we show that

both a) PML(mIm) is monotone-nonincreasing in m and b) PML(mlm) is bounded

below.

a) We adopt the following notation.

P(m) - PML(mlm) m > 0 (8.10)

P(m; m') P(m- m') m > m' (8.11)

By the scale-invariance of our system showing

ml < m 2 --+ P(m;mi) < P(m;m 2) (8.12)

is equivalent to demonstrating that P(m) is monotone-nonincreasing.

We note that eq.'s(8.8,8.9) preserve positive definite orderings; i.e. if P1 (m 2) <

P2 (m 2) then P1(m; m 2) < P2(m; m2) for m > m 2. We now take

Pl(m2 ) = P(m 2;ml) (8.13)

P2(m 2 ) = oo (initial condition for the ML estimator) (8.14)

Then,

Pl(m;m 2 ) = P(m;ml) (8.15)

P2(m;m 2 ) = P(m;m 2) (8.16)

for m > m 2 . So by the property of postitive definite ordering of the Riccati equations

we know that

Pl(m; m 2) < Pl(m; m 2) (8.17)
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and thus,

P(m; ml) < P(m; m 2) (8.18)

b) The fact that PML(mlm) is bounded below follows from Theorem 5.4 under

our assumptions of reachability and observability.

Having established the convergence of PML(mlm), let us denote the limit as fol-

lows.

lim PML(mlm)-Poo (8.19)

Note that by Theorem 5.4 POO must be positive definite. We can also establish that

PML(mlm) must converge to the solution of the steady state Riccati eq.(8.5). Since

PML(mlm) both satisfies the Riccati eq.'s(8.8,8.9) and converges to a limit, this limit

must satisfy the fixed point equation for eq.'s(8.8,8.9). This fixed point equation is

precisely the steady state Riccati eq.(8.5).

Exponential Stability of (I - KooC)F

In order for (I - KooC)F to be 12 -exponentially stable, it must have eigenvalues

that are strictly less than _2. This fact follows from Theorem 6.1.

From Theorem 7.1 we know that the following system is exponentially stable with

respect to I11 - 11.

z(t) = PML(m((t)[m(t))PP(m(t)Im(t) - 1)(z(at) + z(/3t)) (8.20)

which can be rewritten as

z(t) = -(I - K(m(t))C)F(z(cat) + z(flt)) (8.21)

where

K(m(t)) = PML(m(t)Im(t))CT R -1 (8.22)

But, since linm,, PML(mlm) = PoO, the system in eq.(8.21) in steady-state becomes

z(t) = -(I - KooC)F(z(at) + z(/t)) (8.23)

Uniqueness of Po
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Consider P1 and P 2, both of which satisfy the steady state Riccati eq.(8.5). Thus,

P = FP FT+ GQGT
2 2

- K( 1CFP1 FTCT + i CGQGTCT + R)K (8.24)2 2

P2= FP 2 FT+ GQGT2 2
1 TCTT(8.25)- K 2(!CFP2 FTCT+ CGQGTCT + R)KIT (8.25)
2 2

Subtracting eq.(8.25) from eq.(8.24) we get

P 1 - P2 = v2 (I - K C)F(Pi - P2 )( (I - K 1C)F)T
2 2

+ A (8.26)

where A is a symmetric matrix. Note that we have established the fact that 2/(I-

K 1C)F has eigenvalues within the unit circle. From standard system theory this tells

us that we can write P1 - P2 as a sum of positive semidefinite terms. This implies that

P1 - P2 is positive semidefinite or P1 > P2. By subtracting eq.(8.24) from eq.(8.25)

and using the same argument we can establish that P2 > P1 .

Note that the preceding analysis assumed constant matrices F, G, C, Q, and R. If

we begin with our original downward model eq.(2.2), eq.(2.9) with A, B, C, Q, and

R invertible, the constancy of F, G, and Q require that p -l is constant. As we

are interested in asymptotic behavior, there is no loss of generality in assuming this

and there are two distinct cases. Specifically, if A is stable, then the covariance

P,(m(t)) at all finite nodes(starting from an infinitely remote coarse level) is the

positive definite(because of reachability) solution P, of eq.(2.4), and in this case, we

have that

P(mlm) - (P' + p-l)- 1 (8.27)

On the other hand, if A is unstable, P-'l(m(t)) -, 0 and

P(MIM) --4 P... (8.28)
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Note that the existence of two distinct limiting forms for P(mlm), depending on the

stability of the original model is another significant deviation from standard causal

theory.
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9 Summary

In this paper we have analyzed in detail the filtering step of the Rauch-Tung-Striebel

smoothing algorithm developed in [7] for the optimal estimation of a class of mul-

tiresolution stochastic processes. In particular we have developed the system-theoretic

concepts necessary for the analysis of the stability and the steady-state properties of

the filter. Notions of stability, reachability, and observability were developed for sys-

tems whose dynamics evolve upward on a dyadic tree. We then used these notions in

showing stability of the optimal filter and steady-state convergence of the filter.
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We define the following quantities.

YM,to = 7HMXMto (.29)

xto = O(to)XM,to (.30)

O(to) = GI 2M (.31)

where G is invertible(and thus <(to) is onto). We use XA(-) and R(-) to denote

nullspace and rangespace, respectively. A system is upward-reconstructible if given

YM,to, Xto is uniquely determined, i.e. A/(-/(M) C Ar((I(to)). We first prove the

following lemma.

Lemma .1 For all M

TIMHMOT (to) = AT(to) (.32)

where

A = diag( A...A ) (.33)

2M times

and A is some matrix.

Proof

The structure of -TM'H1M, which we denoted as MM, is described in a recursive

fashion in eq.'s(4.20-4.24). We compute

MMOT(to) = U(M, 0)oT(to)

U(M, 1)GTI2TM-1 + 2M-1T(M, O)GTI2 M- 134)
2M-1 T(M, O)GTI2Ml + U(M, 1)GTITM_,

By repeating this procedure M - 1 more times we get

U(M, 0)OT(to) = AT(to) (.35)

where

A=diag( A...A ) (.36)

2 M times
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and
M-1

A = E 2M-1-iT(M, i) + U(M, M) (.37)
i=O

We prove the following theorem.

Theorem .1 A/'(7/M) C A/((to)) iff D(to)m7-,TMDT(to) is invertible.

Proof

a)

JA/(7-M) C A/(40(to)) , 1(to).tHTMMT (to) is invertible

Assume D(to)7-lTMM DT(to) is not invertible. Then for some y - 0, yTr(to)HTl7-[MM T(to)y 

0. This implies 7-tMT(to)y = 0. But the fact that I)(to) is onto implies qT(to)y i

0. Furthermore, DT(to)y $ 0 implies D(to),T(to)y $ 0 since if it were true that

D(to)~T(to)y = 0, then yTr(to)DT(to)y = 0, which implies (4T(to)y = 0. Thus, there

exists a z : 0, namely q4T(to)y, such that l-MZ = 0 and D(to) i 0; i.e. it is not true

that ./(-HM) C J/f(f(to)).

b)

· (to)THMTlM4T(to) is invertible - ( A/m(7-M) C A/(D(to))

Assume that J/(7-M) C A((D(to)) is false; i.e. there exists an x such that 7-MX = 0

and ~4(to)x 4 0. Since x E R((DT(to)) AfJ(O(to)), we can write x = XR(qT(to)) +

Xzr(D(to)) where Xr((jT(to)) is non-zero and xg(D(to)) may or may not be non-zero.

Since 'HMX = 0, IMXZR(*T(to)) + 7-(MX(i(to)) = = 0, which means that tHM T(to)y +

YMXVAr((tO)) = 0 for some y $ 0. Left multiplying by D(to)1i-M, we get

D(to)7MT-tM&"T(to)y + (to)MHT 7-MXAf(q(to)) = 0 (.38)

But from Lemma .1 and our definition for (I(to), we get

·(to) =M -(oM = ()A = GA[ I (.39)

2 M times
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By substituting (.39) into (.38), we get

~(to)HI1MTHMbT(to)y + GAT[ I.l ]xzv($(to)) = 0 (.40)

2 M times

for y $- 0. But xzr((to)) E NA/(((to)) implies that O(to)xzv(,(to)) = 0 or, using

the definition of I)(to), G[ I...I ]xKr((to)) = 0. But since G is invertible, then

2 M times
[ I...I ]xr((to)) = 0. Thus, eq.(.40) collapses to 4(to)H7.TM 4T(to)y = 0 for some

2 M times
y -/ 0, implying that yT (to)XHT IMIT(to)y = 0 for some y f 0; i.e. ~(to)H-(T1M ~ T (to)

is not invertible.

El


